
Leap Before You Look�
Information Gathering in the puccini planner

Keith Golden
NASA Ames Research Center

M�S �����
Mo�ett Field� CA ���	
�����
kgolden�ptolemyarcnasagov

��
�� ����	
�

Abstract

Most of the work in planning with incomplete informa�
tion takes a �look before you leap� perspective� Ac�
tions must be guaranteed to have their intended e�ects
before they can be executed� We argue that this ap�
proach is impossible to follow in many real�world do�
mains� The agent may not have enough information to
ensure that an action will have a given e�ect in advance
of executing it� This paper describes puccini� a partial�
order planner used to control the Internet Softbot �Et�
zioni � Weld 	

��� puccini takes a di�erent approach
to coping with incomplete information� �Leap before
you look� puccini doesn�t require actions to be known
to have the desired e�ects before execution� However�
it still maintains soundness� by requiring the e�ects to
be veri�ed eventually� We discuss how this is achieved
using a simple generalization of causal links�

Introduction
A boy�s appetite grows very fast� and in a few moments
the queer� empty feeling had become hunger� and the
hunger grew bigger and bigger� until soon he was as
ravenous as a bear�

Poor Pinocchio ran to the �replace where the pot was
boiling and stretched out his hand to take the cover o��
but to his amazement the pot was only painted Think
how he felt His long nose became at least two inches
longer�

He ran about the room� dug in all the boxes and draw�
ers� and even looked under the bed in search of a piece
of bread� hard though it might be� or a cookie� or per�
haps a bit of �sh� A bone left by a dog would have
tasted good to him But he found nothing� � � �

Suddenly� he saw� among the sweepings in a corner�
something round and white that looked very much like
a hen�s egg� In a ji�y he pounced upon it� It was an
egg�

� Carlo Collodi�� The Adventures of Pinocchio

Pinocchio�s search for food is evocative� in part� be�
cause it is so familiar Whether looking for food� a pass�
port� or information on the Web� we have all had the
experience of searching exhaustively for something until
we �nd it Even though any single action� such as open�
ing a drawer or looking under the bed� is likely to result

�Translated from the Italian by Carol Della Chiesa

in failure� we know that if we search long enough� we
are likely to �nd what we�re looking for Pinocchio�s at�
tempt to lift the cover from the pot is also familiar� since
attempts to open locked doors or copy read�protected
�les result in similar frustration of our expectations
What these activities have in common is some precon�
dition that we assumed to be true� but later found to
be false
We are interested in the problem of building agents

that can solve user goals in software environments� such
as the Unix operating system or World Wide Web� in
which the agent has massively incomplete �but correct�
information about the world One such agent is the
Internet Softbot �Etzioni � Weld ����� Internet re�
sources and Unix commands are represented as planner
actions� and a planner� called puccini�� is used to �nd
some combination of these actions that together will
achieve the user�s goal
It should not be surprising to anyone who has looked

for something on the Web that agents in such environ�
ments could spend much of their time searching for �les
or Web pages in much the way that Pinocchio searched
for something to eat However� most planners that
deal with incomplete information don�t behave much
like Pinocchio
Most planners� by adopting some form of knowledge

preconditions �Moore ���
�� require the agent to know�
a priori� that an action will have some desired result As
we argued in �Golden �Weld ������ and will brie�y dis�
cuss here� these knowledge preconditions are represen�
tational handcu�s� which make action representations
more awkward and limit the utility of our planners� our
action language� sadl� eliminates them In this paper�
we show how a simple generalization of causal links al�
lows a planner to exploit the elimination of knowledge
preconditions� without giving up soundness We show
empirically that this added expressiveness does not de�
grade planner performance
The remainder of the paper is organized as follows

�
puccini stands for Planning with Universal quanti��

cation� Conditional e�ects� Causal links� and INcomplete
Information� puccini is a partial�order planner based on
ucpop �Penberthy � Weld 	

��� An earlier version of
puccini was called xii�

First� we introduce the fundamentals of the sadl lan�
guage and the puccini planner Then� in the next
section� we brie�y discuss the problem with knowledge
preconditions Although knowledge preconditions� as
in�exible requirements of the planner� are harmful� it
is still necessary for the planner to gather information
in support of planning In the following section� we
show how that is done in puccini Then we consider
the option of assuming that certain preconditions hold�
performing the action� and verifying the preconditions
afterward Finally� we evaluate the cost of this added
�exibility

Back in the sadl

puccini goals and actions are described using the lan�
guage sadl�� which builds on uwl �Etzioni et al� �����
and adl �Penberthy ���	� Like uwl� sadl is designed
to represent sensing actions and information goals To
distinguish sensory e�ects from causal e�ects and goals
of information from traditional goals of satisfaction�
sadl provides annotations for goals and e�ects
Following uwl� sadl divides e�ects into those that

change the world� annotated by cause� and those that
merely report on the state of the world� annotated by
observe Executing actions with observe e�ects as�
signs values to runtime variables that appear in those
e�ects By using a runtime variable �syntactically iden�
ti�ed with a leading exclamation point� e�g� �tv� as a
parameter to a later action �or to control contingent ex�
ecution�� information gathered by one action can a�ect
the agent�s subsequent behavior For example� ping
twain has the e�ect of observe �machinealive�twain��
�tv�� i�e� determining whether it is true or false that the
machine named twain is alive� and wc myfile has the
e�ect observe �wordcount�myfile� �word��� i�e� deter�
mining the number of words in myfile The variable
�tv� above� is the truth value of the proposition ma�
chinealive�twain� All literals have truth values ex�
pressed in a three�valued logic� T� F� U �unknown�� or
represented by a variable If a truth value is not speci�
�ed� it defaults to T
Goals are similarly annotated The goal satisfy�P �

indicates a traditional goal �as in adl�� achieve P by
whatever means possible In the presence of incom�
plete information� we make the further requirement
that the agent knows that P is true� so satisfy�P �
means that KNOW�P � must be true in the �nal state
of the plan Free variables are implicitly existentially
quanti�ed� and the quanti�er takes the widest possible
scope For example� satisfy�indir �f � tex�� T� means
�Ensure that there�s at least one �le in directory tex��
and satisfy�indir �myfile� tex�� tv� means �Find out
whether or not myfile is in tex�
The initially annotation� introduced in �Golden �

Weld ������ is similar to satisfy� but it refers to the
time when the goal is given to the agent� not to the time
when the goal is achieved initially�P � tv� means that
by the time the agent has �nished executing the plan�

�
sadl stands for Sensory Action Description Language�

it should know whether P was true when it started
initially�P � is not achievable by an action that changes
the �uent P � since such an action only obscures the ini�
tial value of P However� changing P after determining
its initial value is �ne By combining initially with
satisfy we can express �tidiness� goals� modify P at
will� but restore its initial value by plan�s end �Golden
� Weld ����� Weld � Etzioni ����� Furthermore� we
can express goals such as �Find the the �le currently
named paper�tex� and rename it to kr�tex�� which is
beyond the expressive power of most planners �Golden
� Weld �����
The hands�o� annotation indicates a maintenance

goal that prohibits the agent from changing the �uent
in question
Like adl� sadl also supports universal quanti�cation

and conditional e�ects Combining these features with
observe e�ects yields expressive sensor models� such
as those shown in the next section

puccini overview

puccini is a partial�order planner in the same family as
snlp �McAllester � Rosenblitt ����� and ucpop �Pen�
berthy � Weld ����� It builds plans incrementally by
starting with an empty plan and a goal agenda of goals
that need to be achieved When goals are achieved�
they are removed from the goal agenda When actions
are added to the plan in support of goals� their pre�
conditions are added to the goal agenda This process
continues until the goal agenda is empty or some goal
proves impossible to achieve When a goal has been
�achieved� by adding an action to the plan� we must
guard against the possibility that some other action
added later will �clobber� the goal� forcing the planner
to re�achieve it To prevent this from happening� the
planner adds a causal link �Tate ������ which records its
commitment to achieve a given goal by using the e�ect
of a given action If e�ect e of A� is used to support
precondition q of A�� we represent the corresponding

causal link as A�

e�q
�A� A� is required to precede A� so

that q will be achieved by the time it�s needed Any
change to the plan that would violate the causal link
is called a threat to the link� and must be resolved by
the planner For example� an action At with the e�ect
�q possibly occurring between actions A� and A� would

threaten the link A�

e�q
�A� This threat might be resolved

by adding an ordering constraint to ensure that At is
executed before A� or after A� In addition to achieving
goals on the goal agenda and resolving threats� puccini
must execute actions These three procedures comprise
the top�level puccini algorithm �Figure �� This paper
only focuses on a narrow aspect of the goal achieve�
ment procedure �Figure �� For a discussion of the
other aspects of the algorithm� consult �Golden �����
Etzioni� Golden� � Weld �����

Knowledge Preconditions
Knowledge preconditions are meant to capture the in�
formation needed by an agent to execute an action for
a given purpose For example� an agent opening a safe

puccini �hA�O�B� C� Ei� G� D� s�

�� If G � ��E � ���� � C � not threatened� return
success�

�� Pick one of

�a� HandleGoal�A� O� B� C� G� D�

�b� HandleThreats�O� B� C� G�

�c� s �� HandleExecution�A� O� B� C� E � s�

�� PUCCINI�hA�O�B�C� Ei� G� D� s�

Figure �� The puccini Algorithm takes as input a plan�
a goal agenda �G�� a domain theory �D�� and the cur�
rent state of the world� s� which is only partially known
The plan consists of a set of actions �A�� ordering rela�
tions on A �O�� variable binding constraints �B�� causal
links �C� and unexecuted actions in A �E� The planner
repeatedly �xes ��aws� in the plan �open goals� threats
and unexecuted actions� until the plan is complete The
lines of the algorithm relevant to this paper are shown
in bold

needs to know the combination In �Golden � Weld
������ we argued that the practice of specifying knowl�
edge preconditions for actions was too restrictive and
should be abandoned

Moore �Moore ���
� identi�ed two kinds of knowl�
edge preconditions an agent must satisfy in order to ex�
ecute an action in support of some proposition P � First�
the agent must know a rigid designator �i�e�� an unam�
biguous� executable description� of the action Second�
the agent must know that executing the action will in
fact achieve P Subsequent work by Morgenstern �Mor�
genstern ����� generalized this framework to handle
scenarios where multiple agents reasoned about each
other�s knowledge

The �rst type of knowledge precondition doesn�t
present any problem for us� since� in our language� all
actions are rigid designators dial�combination�safe��
is not an admissible action� but dial���������� is
Lifted action schemas� e�g� dial�x�� are not rigid des�
ignators� but it is easy to produce one by substituting
a constant for x

Moore�s second type of knowledge precondition pre�
supposes that an action in a plan must provably succeed
in achieving a desired goal This is a standard assump�
tion in classical planning� but is overly restrictive given
incomplete information about the world� enforcing this
assumption by adding knowledge preconditions to ac�
tions is inappropriate For example� if knowledge of the
safe�s combination is a precondition of the dial action�
then it becomes impossible for a planner to solve the
goal ��nd out whether the combination is 	������
� by
dialing that number� since before executing the dial ac�
tion� it will need to satisfy that action�s precondition of
�nding out whether 	������
 is the right combination�

Eliminating the knowledge precondition from the
dial action also allows the unhurried agent to devise
a plan to enumerate the possible combinations until it

�nds one that works� While this may seem silly� Pinoc�
chio was following an identical strategy in his hunt for
food The Internet Softbot does the same when di�
rected to �nd a particular user� �le or web page� whose
location is unknown If finger and ls �Figures � and
	� included knowledge preconditions� then the actions
would be useless for locating users and �les For ex�
ample� ls 	papers only returns information about the
�le aips�tex if aips�tex is in 	papers Yet planning
to move aips�tex into 	papers misses the point if the
goal is to �nd aips�tex�
In a broad class of domains� which we call knowledge�

free Markov �KFM� domains� the e�ects of an action
depend only on the state of the world �and not on the
agent�s knowledge about the world� at the time of ex�
ecution In such domains� actions are best encoded
without knowledge preconditions Simple mechanical
and software systems are naturally encoded as KFM�
while domains involving abstract actions are typically
not Such actions represent complex �albeit sketchy�
plans in their own right� and depend on the agent�s
knowledge to be executed successfully
Although knowledge preconditions are problematic�

it is often useful for an agent to plan to obtain informa�
tion� such as the combination of a safe� either to reduce
search or to avoid dangerous mistakes For example� if
there�s an alarm on the safe� then it would be a bad idea
to try all combinations More importantly� it is neces�
sary that the agent know� by the time it is �nished�
that it has achieved the goal If we don�t maintain this
constraint� our planner is not even sound�

Planning to Sense

The solution is to give the planner the information
needed to determine when obtaining information� such
as the combination of a safe� would be useful� and then
leave it to the planner to decide how and when to ac�
quire that information We do so quite simply by the
use of conditional e�ects �see Figures � and 	� Follow�
ing �Pednault ������ we call the precondition of a condi�
tional e�ect a secondary precondition �the precondition
of the action itself is known as a primary precondition�
If the agent wants to know whether a conditional ef�
fect will occur� it needs to know whether the corre�
sponding secondary precondition is true However� we
don�t require the planner to achieve the secondary pre�
conditions before executing an action� even if it wants
the corresponding e�ects to occur In this sense� the
secondary preconditions are descriptive� not prescrip�
tive The planner has the option of ensuring that these
secondary preconditions are true before it executes the
action� but it can also verify them after the fact We
consider the former case in this section We will discuss
the latter in the next section
The planner can ensure that a precondition is true

by either observing it to be true or making it true For
example� suppose a softbot wants to compress the �le

�Richard Feynman estimated that he could open a safe
using this method in four hours �Feynman 	
����

action finger�s�
precond� satisfy �current�shell�csh��
effect� � �p � �l� �f� �u

when lastname��p� s� �

�rstname��p� s� �

userid��p� s�
observe ��rstname��p� �f�� �

observe �lastname��p� �l�� �

observe �userid��p� �u��

Figure �� Unix action schema� A simpli�ed version of
the puccini finger action to �nd information about a user�
This action returns information about all users whose �rst
name� last name or userid is equal to the input string s�
Variables like �p� beginning with an exclamation point� are
called run�time variables� The values of these variables are
determined at run time as a result of sensing� E�ects labeled
with observe designate propositions that are sensed by the
agent� as opposed to being a�ected�

action ls�d�
precond� satisfy �current�shell�csh��
effect� � �f when in�dir��f� d�

� �p� �n
observe �in�dir��f� d�� �

observe �pathname��f� �p�� �

observe �name��f� �n��

Figure 	� Unix action schema� A simpli�ed version of
the puccini ls action �Unix ls �a� to list all �les in a direc�
tory� The relation in�dir��f� d� means �le �f is in directory �d�
so this action returns information about all �les in a given
directory�

aips�tex� and decides to do so by executing the action
compress 	papers	
� which compresses every �le in
the directory 	papers The action will only succeed if
aips�tex is actually in directory 	papers The softbot
could subgoal on ensuring that aips�tex is in 	papers�
either by observing that aips�tex is in 	papers� using
the action ls �see Figure 	�� or by moving aips�tex
into 	papers We use the term observational link to de�

note links� A�

e�q
�A�� in which the e�ect e is an observe

e�ect
Suppose a softbot wants to �nd the userid of Oren

Etzioni� a University of Washington professor It can
do so using the finger command �Figure �� finger
takes a single argument� a string� and will only provide
information about Oren if that string is Oren�s �rst
name� last name or userid Since the softbot doesn�t
know Oren�s userid� that will be useless to subgoal on�
but the softbot does know Oren�s �rst and last names
Suppose it adopts the subgoal of knowing Oren�s last
name This can be satis�ed using the softbot�s prior
knowledge about the world The softbot�s prior knowl�
edge is represented in the planner as the e�ects of a
dummy �initial step�� A� So the planner adds a link
from A� to finger� representing its commitment to use
its knowledge of the initial state to satisfy its goal of
knowing Oren�s last name
Now suppose the softbot is given the goal of �nd�

ing a user with the userid map� i�e�� initially�userid�p�
map��� but it has no knowledge about any users� includ�
ing whatever user� if any� has the userid of map The
softbot could plan to execute finger map� but it�s less
obvious what to do with the secondary preconditions of
finger Since the softbot doesn�t know anything about
the user in question� it can�t know that user�s �rst name
or last name It also doesn�t know what user p satis�es
the relation userid�p� map� While we could try simply
asserting that there�s a user whose userid is map� this
fact is not necessarily true� and asserting it into the
softbot�s knowledge base would introduce a number of
complications� not the least of which is that the soft�
bot would erroneously believe that it already knew the
answer to the query

Leap before you look

Impasses like the one above are all too common For�
tunately� they have a simple solution In the case of
finger map� above� the softbot can just execute the
finger� it will know afterward what user has that
userid� since the action has the e�ect

when userid��p� s� observe �userid��p� �u���

In short� the softbot will know after executing finger
mapwhether the secondary precondition was true before
executing it Since the softbot can verify after the fact
that the precondition was true� there�s no reason not to
go ahead and execute the action
What we want is the ability to temporarily assume

the secondary precondition is true� and to later verify
that the assumption was valid by performing an obser�
vation Formally� a commitment to verify an assump�
tion is a quadruple hAp� p� e� Aei� where p is a precondi�
tion of some e�ect of Ap p is assumed to be true� and is
to be veri�ed by e�ect e of action Ae Note that� unlike
our discussion in the previous section� it is essential that
the veri�cation be done by an observation� since that
is the only way to obtain information about the past
Executing an action that caused the precondition to be
true would be useless� since the precondition needs to
have been true before the action was executed Because
the observation will only be valid if the condition p re�
mains unperturbed� we must protect p over the interval
between Ap and Ae
There is a striking similarity between these commit�

ments to verify preconditions and observational links
In fact� they are identical to observational links� with
the exception that the order of the producer and con�
sumer is reversed� We call these commitments veri��

cation links� and write them as Ap
p�e
�Ae Because we

want to consider supporting these preconditions by ei�
ther prior observation or later veri�cation� we can ac�
complish this feat quite simply by omitting the order�
ing constraint that would normally be placed between
the producer and consumer Since the only di�erence
between an observation link and a veri�cation link is

�This reasoning depends on the fact that every user has
at most one userid� but the planner has access to this fact�

in the ordering constraint� omitting the ordering con�
straint means the planner hasn�t committed to which
kind of link it is Eventually� the actions will be ordered�
either in the course of planning or prior to execution
Once that happens� the link will be either an observa�
tion link or a veri�cation link� depending on the action
order Relaxing the ordering constraint allows for self�
links as well� as in the case of finger map� above For
example� consider the following e�ect of ls�

� �f when indir��f� d� observe �indir��f� d���

where indir��f� d� means that �le �f is in directory �d
We can satisfy the indir precondition by linking to the
e�ect of the same action �see Figure �� If the desired
�le is not in the directory� the observe e�ect ensures
that the agent will know that fact after executing the
action�� and the assumption will be proven false
One potential concern about veri�cation links is that

they increase the size of the search space by giving
the planner more ordering options In fact� this is in�
evitable� since more plans are admissible when veri�ca�
tion links are allowed However� the number of plans
that are solutions also increases� and� due to the least�
commitment approach� the alternative ordering options
may never be explicitly explored Thus� it is possi�
ble that using veri�cation links would actually decrease
the number of plans explored� at least in some cases
Whether more or fewer plans are explored is an empir�
ical question� which we investigate in the next section

:GOALls /papers

observe(in.dir(aips, /papers))

satisfy(in.dir(aips, d))

Figure �� puccini adds ls �papers in support of the goal
of �nding the �le aips�tex� Since this relies on the con�
ditional e�ect of ls� the desired outcome will only occur
if in�dir�aips�tex� �papers� is true when ls is executed�
Rather than trying to achieve this precondition� puccini
adds a veri�cation link from the e�ect of ls� observe
�in�dir��f� �papers��� to this precondition� The agent will
know after executing the ls whether the precondition was
true�

Bookkeeping

While we can handle assumptions elegantly by lifting
the ordering constraints imposed along with observa�
tional links� that doesn�t free us from bookkeeping The
e�ects supported by assumptions are still contingent�
and we must exercise care in what we do with them We
should not store them in the agent�s knowledge base or
execute actions with primary preconditions supported
by them until they have been veri�ed

�Actually� it is the fact that the agent observes all �les
that enables the agent to conclude that other �les are not
in the directory� See �Etzioni� Golden� � Weld 	

�� for a
discussion of how this inference works�

Ap

(a) (b)

As

Ap

Ac

As

Ac

Ap’

Figure
� Bookkeeping for veri�cation links� �a� Ap may
follow Ac� but is used to verify a precondition of an e�ect
of Ac� This e�ect� in turn� satis�es a primary precondition
of As �solid lines indicate links�� The e�ects of As are un�
de�ned unless the precondition is satis�ed� and it won�t be
known whether Ac had the desired e�ect until Ap has been
executed� so an ordering constraint is added to ensure that
As is not executed before Ap �dotted lines indicate ordering
constraints�� �b� The secondary precondition of Ap itself
is supported by an action� Ap� � that may be executed later�
Since Ap� is indirectly providing support for As� it must also
be executed before As�

This bookkeeping is really quite simple If a link

Ap
q�e
�Ac may represent a veri�cation link� as opposed

to an observational link �i�e�� Ac is not constrained to
come after Ap� all actions As whose primary precondi�
tions are supported by Ac are required to follow Ap �see

Figure
�a�� If Ap
q�e
�Ac turns out to be observation link�

no harm was done in adding the constraint Ap � As
The constraint is redundant� since As must follow Ap�
by transitivity of the ordering relation �Ap � Ac � As�
Furthermore� if the e�ect e of Ap itself has a pre�

condition supported by a �possibly later� action Ap� �
the constraint Ap� � As will also be added �see Fig�
ure
�b�� In general� we require an action As to follow
all other actions that provide support to one of its pri�
mary preconditions� where an action provides support
to a given precondition if it directly supports the pre�
condition or if it provides support to the precondition of
an e�ect that directly supports the given precondition
These ordering constraints are added in the AddLink
procedure �Figure ��
When it comes time to execute an action� all causal

e�ects whose preconditions are unknown� including as�
sumptions� must be asserted as unknown in the agent�s
knowledge base Additionally� all e�ects whose assumed
preconditions have been veri�ed should be asserted as
true �this is valid� since the link guarantees that the
agent didn�t change the condition in the interim�

Evaluation
While the examples we have given in this paper show
the bene�ts of a �leap before you look� approach� the
real test is how well this approach actually works in
a real planning domain In fact� the evolution of the
puccini planner was driven by representational prob�
lems we encountered in trying to encode Unix and
Internet action schemas for the Softbot� and trying
to get a planner to produce reasonable plans using

HandleGoal�A� O� B� C� G� D�
if G �� � then pop hg� Sci from from G and select case�

�� If g � hContext� condi� and Contextj�cond then g is
trivially satis�ed�

�� If g is a hands�o� goal� then call AddLink�A�� g� nil�
Sc� O� B�

�� Else nondeterministically choose

�a� Reduce�g� G�
�b� Instantiate a new action Anew from D� such

that Satis�es�e� g� and add it to A� Call
Addlink�Anew� g� e� Sc� O� B�� Add precon�
ditions of Anew to G�

�c� Choose an existing action Aold from A� such
that Satis�es�e� g� and Call Addlink�Sp� g� e�
Aold� O� B��

	� Propagate context labels

Figure �� Procedure HandleGoal The lines of the algo�
rithm relevant to this paper are shown in bold

Addlink�Sp� goal� e
� Sc� O� B�
�goal � hContext� gi� e
 � when �p� e�

� If g is an initially goal� addA�

e�goal
� Sp to C� Otherwise�

add Sp
e�goal
� Sc to C�

� Unless g is an unannotated secondary precondition
and e is an observe e	ect

�� Add Sp � Sc to O

�� If e is supported �directly or indirectly� by a po�
tential veri�cation link� whose producer is Ap�
add Ap � Sc to O

� Add MGU�e� g� to B�
� Add hhContext� pi� Spi to G

Figure �� Procedure Addlink The lines of the algorithm
relevant to this paper are shown in bold

these schemas Many of these struggles are discussed
in �Golden � Weld ����� Etzioni� Golden� � Weld
����� One of the greatest representational gains came
from the elimination of knowledge preconditions and
the introduction of veri�cation links For example�
when knowledge preconditions were used to encode ac�
tions� we needed no fewer than six encodings of the
finger action �Figure ��� and even these six were not
enough to fully capture the functionality of the one
finger action we have now Needless to say� this prolif�
eration of actions presented greater search control prob�
lems� and the addition of more search control made the
entire system more brittle
Despite these gains� there are some potential pitfalls�

which we should be on guard for As we mentioned ear�
lier� veri�cation links can increase the size of the search
space by giving the planner more ordering options To
determine whether this is a problem in practice� we ran
three versions of puccini on �� representative Softbot
goals These goals are described in detail in Section

��� of �Golden ������ but� brie�y� they involve �nd�
ing web pages� phone numbers and �les �locally and
via FTP� and compiling �LATEX�� displaying� printing�
compressing and changing permissions on �les For ex�
ample� goal �
 is �Display all web pages referenced by
hyperlinks from both Dan Weld�s homepage and Oren
Etzioni�s homepage�� which requires �nding the appro�
priate home pages� scanning both pages to �nd links in
common� and then running Netscape on each common
link
Table � shows the statistics for solving these goals�

using each version of puccini The three versions are
as follows�

� VL is the version of puccini presented here� which
supports veri�cation links and allows the producer of
a veri�cation link to follow the consumer

� NO does not allow the producer to follow the con�
sumer� but still allows self�links �i�e�� the producer is
the consumer�

� �VL disallows all veri�cation links

The statistics shown include both planning CPU time
and real time for planning and execution The real
time re�ects the time required to actually execute the
commands and wait for completion� and thus represents
the time that the user is most likely to care about In
the experiments we report� the Softbot easily solved the
goals� using very little domain�dependent search control
and executing the minimal number of actions needed to
achieve the goals
More importantly� we �nd that� for the goals that

are solvable without veri�cation links� the use of veri��
cation links has virtually no impact on the size of the
search space With the exception of goal
 �for ver�
sion �VL� the number of plans searched does not vary
with the planner con�guration However� the number of
solvable goals decreases signi�cantly when veri�cation
links are disabled
If veri�cation links are entirely disabled ��VL�� only

two of the goals are solvable The reason for this is that
the sadl encodings of actions like ls and finger are
almost impossible to plan with if the planner doesn�t
support self�links Due to this limitation� the compari�
son between VL and �VL is not entirely fair In order to
more fairly judge the impact of veri�cation links� we ran
the same problems on xii� the predecessor of puccini
Since xii doesn�t support veri�cation links� the action
encodings for that planner don�t rely on them Three
of the goals� which rely on actions that were not part
of the original xii domain theory� could not be solved
by xii and were omitted from the test suite
Table � shows the results for the seven remaining

goals Since the domain theories used by puccini and
xii are di�erent� these performance results should be
taken with a grain of salt� but they are suggestive Of
these goals� � and � are impossible to solve because the
goals require the temporal expressiveness provided by
the initially annotation� which xii does not support
Goal � is impossible to achieve without the use of veri�
�cation links� despite the fact that the xii domain was

� plans exec CPU �s� real �s�
� � � � �
� � � � �
	 	� � �
� ���
� ��� � ���� �	��
� 	��� ��
	�
� ����	
� � � � �
�� ��� � �
�� ����

Table �� Planner statistics for seven out of ten sam�
ple goals� given to the xii planner� running on a Sun
SPARCstation �� ��� indicates that the goal is impos�
sible for xii to achieve Row and column labels are from
Table �

engineered to get around their absence This goal is
quite simple� Produce a color printout of a document
and report the status of the print job However� it cuts
to the heart of a problem that stumped the Softbot
team since the very beginning� Print jobs are produced
by the lpr command� but lpr tells us nothing about
them To �nd out whether the print job actually ex�
ists and what identi�er it has� we must execute lpq
Thus� the e�ect of lpr� the creation of a print job� is
contingent on the job being sent to the print queue� a
fact that can only be veri�ed �by lpq� after the lpr
has been executed This does not present a problem if
the planner supports veri�cation links� but it creates a
representational headache without them

Conclusions

Past work in planning required agents to know� be�
fore executing an action� that the action would have
its intended e�ect We have shown that this restric�
tion can be harmful� and we have shown that a simple
change to a causal link planner� relaxing an ordering
constraint� gives an agent the �exibility to subgoal on
obtaining this knowledge when doing so would be fruit�
ful� but also allows it to assume preconditions are true
and later verify them to be true We have shown that
this mechanism can be implemented without impairing
tractability

Related Work

puccini is an extension of xii �Golden� Etzioni� � Weld
������ which is based on the ucpop algorithm �Pen�
berthy � Weld ����� puccini builds on xii by sup�
porting a more expressive language� sadl �Golden �
Weld ������ and handling veri�cation links xii builds
on ucpop by dealing with information goals and ef�
fects� interleaving planning with execution and reason�
ing with Local Closed World knowledge �lcw� �Etzioni�
Golden� � Weld ����� The algorithm currently used
for interleaving planning with execution builds on the
approach used in ipem �Ambros�Ingerson� Steel �����
Unlike ipem� puccini can represent information goals
as distinct from satisfaction goals ipem makes no
such distinction� and thus cannot plan for information
goals puccini also has its roots in the socrates plan�

ner �Lesh ����� Like puccini� socrates utilized the
Softbot domain as its testbed and interleaved planning
with execution However� socrates utilized knowledge
preconditions and supported a less expressive action
language �Etzioni et al� �����
We believe that our use of veri�cation links is unique

However� it should be possible for a Partially Observ�
able Markov Decision Process �POMDP� �Koenig �����
Dean et al� ���
�� or the planner C�buridan �Draper�
Hanks� � Weld ������ to produce plans similar to those
produced by puccini using veri�cation links However�
they accomplish this by following a generate�and�test
approach� considering the addition of each possible sen�
sor and testing the plan by checking it against a proba�
bility distribution on all possible worlds They can also
decide not to support the precondition of a conditional
e�ect� provided the probability of that e�ect occurring
anyway is su�ciently high Using this approach� they
can consider all plans that achieve the goal with a given
probability� but the computational cost is daunting
Some planners represent uncertain outcomes using

conditional e�ects� and can execute actions for their
uncertain e�ects �Kushmerick� Hanks� � Weld ���
�
Draper� Hanks� � Weld ����� Pryor � Collins �����
Goldman � Boddy ����� For example� Cassan�
dra �Pryor � Collins ����� represents uncertain out�
comes as conditional e�ects with ��unknown� precondi�
tions� and is capable of using these actions for their un�
certain e�ects Cassandra plans to achieve the goal for
all possible outcomes of each action� and adds sensing
actions to determine which outcome actually occurred
However� since Cassandra doesn�t know what the ac�
tual preconditions of these e�ects are� it cannot subgoal
on �nding out whether the preconditions were true� af�
ter the fact Furthermore� conditional e�ects without
�unknown preconditions are treated in the usual way�
the planner is forced to achieve the precondition if it
wants the e�ect to occur
puccini can represent e�ects that are explicitly un�

certain� by using the U truth value �Golden � Weld
������ but� unlike Cassandra or C�buridan� it can�t
execute these actions for their �uncertain� e�ects This
limitation stems from the fact that puccini was not de�
signed for contingency planning In future extensions
of puccini� we would like to address this limitation

Future Work

Whenever the planner makes a decision to verify a pre�
condition after the fact� that introduces an uncertain
outcome upon which the success of the plan depends
We refer to this as a source of contingency in the plan
There is always the possibility that the precondition is
false� in which case the action won�t have the desired
e�ect For example� if the agent is looking for the �le
aips�tex� and the planner adds ls 	papers into the
plan� there�s a chance aips�tex will turn out not to be
in 	papers� in which case the plan will fail In sadl�
all sources of contingency stem from possibly unsatis�
�ed preconditions �a precondition may be as simple as
an equality constraint� The approach currently taken

prob plans considered actions executed planning CPU �s� real time �s�
num VL NO �VL VL NO �VL VL NO �VL VL NO �VL

�
	
	 � 	 	 � �	� ��� � ��� ��
 �
� �� �� � 	 	 � �
	 �
� � ��� ��� �
	 �� �� � � � � ��� ��� � ��
 ��� �
� ��� � � � � � ���� � � ���
 � �

 ��� ��� ��� � � � ��	 ��� ���
���
��� ���	
� ��� ��� � �� �� �
	�
�� � ���� ���� �
�
�

�
 � �� �� � ���	 ���� � ���� ���� �
� �� �� �� � � � ��� ��� ���
��
��

� 	�� � � � � �
�� � � �
� � �
�� ��� ��� � � � � ���� �
�� � ���� 	
�� �

Table �� Planner statistics for ten sample goals� running on a Sun SPARCstation �� The results are shown for the
puccini planner in three con�gurations� with veri�cation links and �exible ordering �VL�� without �exible ordering
�NO�� and without any veri�cation links ��VL� ��� indicates that the goal is impossible for the planner in question
to achieve

to deal with contingency is to interleave planning and
execution However� some of the techniques used in
puccini� such as the use of context labels� are borrowed
from contingency planning We are in the process of in�
tegrating these techniques more completely� to produce
a hybrid interleaved�contingency planner

Acknowledgements
This research was funded by O�ce of Naval Research
Grants N��������������� and N���������������� by
National Science Foundation Grant IRI��	�	���� and
by ARPA � Rome Labs grant F	������
�������
Thanks to David Smith� Ellen Spertus� Richard Wash�
ington� Dan Weld and the anonymous reviewers for
helpful comments

References
Ambros�Ingerson� J�� and Steel� S� 	
��� Integrating plan�
ning� execution� and monitoring� In Proc� �th Nat� Conf�
AI� ��������

Dean� T�� Kaelbling� L� P�� Kirman� J�� and Nicholson�
A� 	

�� Planning under time constraints in stochastic
domains� J� Arti�cial Intelligence ���

Draper� D�� Hanks� S�� and Weld� D� 	

�� Probabilistic
planning with information gathering and contingent exe�
cution� In Proc� �nd Intl� Conf� AI Planning Systems�

Etzioni� O�� and Weld� D� 	

�� A softbot�based interface
to the Internet� C� ACM �����������

Etzioni� O�� Hanks� S�� Weld� D�� Draper� D�� Lesh� N��
and Williamson� M� 	

�� An approach to planning with
incomplete information� In Proc� �rd Int� Conf� on Princi�
ples of Knowledge Representation and Reasoning� 		��	���

Etzioni� O�� Golden� K�� and Weld� D� 	

�� Sound and
e�cient closed�world reasoning for planning� J� Arti�cial
Intelligence �
�	����		��	���

Feynman� R� P� 	
��� Surely You�re Joking� Mr� Feynman�
New York� Bantam Books�

Golden� K�� and Weld� D� 	

�� Representing sensing
actions� The middle ground revisited� In Proc� 	th Int�
Conf� Principles of Knowledge Representation and Reason�
ing� 	���	���

Golden� K�� Etzioni� O�� and Weld� D� 	

�� Omnipotence
without omniscience� Sensor management in planning� In
Proc�
�th Nat� Conf� AI� 	����	����

Golden� K� 	

�� Planning and Knowledge Representation
for Softbots� Ph�D� Dissertation� University of Washington�
Available as UW CSE Tech Report
��		����

Goldman� R� P�� and Boddy� M� S� 	

�� Representing
Uncertainty in Simple Planners� In Proc� �th Int� Conf�
Principles of Knowledge Representation and Reasoning�

Koenig� S� 	

�� Optimal probabilistic and decision�
theoretic planning using Markovian decision theory�
UCB�CSD
������ Berkeley�

Kushmerick� N�� Hanks� S�� and Weld� D� 	

�� An algo�
rithm for probabilistic planning� J� Arti�cial Intelligence
�����
�����

Lesh� N� 	

�� A planner for a UNIX softbot� Internal
report�

McAllester� D�� and Rosenblitt� D� 	

	� Systematic non�
linear planning� In Proc� �th Nat� Conf� AI� ������
�

Moore� R� 	
��� A Formal Theory of Knowledge and
Action� In Hobbs� J�� and Moore� R�� eds�� Formal Theories
of the Commonsense World� Ablex�

Morgenstern� L� 	
��� Knowledge preconditions for actions
and plans� In Proceedings of IJCAI��� ��������

Pednault� E� 	
��� Toward a Mathematical Theory of Plan
Synthesis� Ph�D� Dissertation� Stanford University�

Penberthy� J�� and Weld� D� 	

�� UCPOP� A sound�
complete� partial order planner for ADL� In Proc� �rd Int�
Conf� Principles of Knowledge Representation and Reason�
ing� 	���		�� See also http���www�cs�washington�edu�
research�projects�ai�www�ucpop�html�

Penberthy� J� 	

�� Planning with Continuous Change�
Ph�D� Dissertation� University of Washington� Available
as UW CSE Tech Report
��	���	�

Pryor� L�� and Collins� G� 	

�� Planning for contingen�
cies� A decision�based approach� J� Arti�cial Intelligence
Research�

Tate� A� 	
��� Generating project networks� In Proc� 	th
Int� Joint Conf� AI� �����
��

Weld� D�� and Etzioni� O� 	

�� The �rst law of robotics
�a call to arms�� In Proc�
�th Nat� Conf� AI� 	����	����

